
Automated Search for Round 1
Differentials for SHA-1: Work

in Progress

Philip Hawkes1, Michael Paddon1, and Gregory G.
Rose2

1 Qualcomm Australia, Level 3, 230 Victoria Rd,
Gladesville, NSW 2111, Australia
{phawkes,mwp}@qualcomm.com

2 QUALCOMM Incorporated, 5775 Morehouse Drive,
San Diego, CA 92121 USA ggr@qualcomm.com

Abstract. Wang, Yin and Yu [24] de-
scribe a high probability differential path
for SHA-1. Since then, various researchers
have proposed techniques for improving the
speed of finding collisions based on ex-
isting differential paths. The speed could
be further improved by finding differentials
through Round 1 (the first 20 steps) that
are optimized to the particular technique.
This paper describes progress on an auto-
mated search for finding differential paths
through Round 1.
Keywords: Hash functions, Collision
search attacks, SHA-1.

1 Introduction

Given the nature of this workshop, the cryptographic
hash functions MD5 [16] and SHA-1 [5] need no intro-
duction. A common element of the recent analyses of
these hash function has been the combined descrip-
tion of the XOR differences and additive differences
between the value of variable while processing two
distinct messages: we call this description the XOR-
additive difference for the variable. The differential
paths consist of a sequence of XOR-additive differ-
ences, and a set of conditions required to ensure dif-
ferences propagate correctly through the IF function.

The extensions1 of the original attack [21, 22] on
MD5 and the original attack [24] on SHA-1 use the
original differential paths from [21, 22, 24].2 Most re-
search has focussed on improving how the original dif-
ferential paths can be exploited, rather than looking
for other differentials. Perhaps the underlying rea-
son for this focus is the undeniable complexity of
1 See Section 2.1 for a quick summary.
2 A technique for obtaining new differentials for SHA-1

is mentioned in [20], but no new differential paths are
presented therein.

the existing differential path in Round 1 (steps 1-20).
This differential must result in the input difference to
Round 2 having a precise form. It is difficult enough
to to verify why the conditions for the differential
path in Round 1 are required, but it is much more dif-
ficult to find a completely new differential path that
results in the correct input difference to Round 2. The
aim of this paper is to share the author’s experience
of attempting to find new differential paths through
the first round of SHA-1. This paper will ignore the
differential path through rounds 2-4.

The intention of this research is to provide a search
method that, when given the following inputs, will
produce a differential path that satisfies the require-
ments specified in the input. The inputs are:

– The XOR differences in the expanded message
words mi−1 for steps 1 to 20.

– The additive differences in (a0, b0, c0, d0, e0) at
the start of Round 1.

– The XOR differences in (a20, b20, c20, d20, e20) at
the end of Round 1.

Our first attempt to find a differential path was a
“by-hand” approach assisted by a spreadsheet. The
user selects the differential path, and the spreadsheet
ensures that, whenever any difference or value is as-
signed to ai, then the difference or value is accurately
passed to bi+1, ci+2, di+3 and ei+4. The attempts to
find new 20-step differentials by hand failed, although
the differentials often got within a one bit difference
of what was required.

This propelled the development of an automated
search for differential paths. As of this point in time,
the implementation is incomplete, and few conclu-
sions can be drawn. This paper outlines the approach
used for this automated search, and is a report on
work in progress.

Our approach is to create two search trees. The
leaves of the forward search tree will correspond to
forward differential paths between step 1 and step
i that can be generated given specified differences
in the input to step 1, and specified differences in
the expanded message sequence. The leaves of the re-
verse search tree will correspond to reverse differen-
tial paths between step 20 and step i that can be gen-
erated given specified XOR and additive differences in
the input to step 21, and specified differences in the
expanded message sequence. We can then compare
the differential paths in the leaves of the two trees to
look for a match. This will make a differential path
from step 1 through to step 20.

At this point in time, the forward search and
reverse search have been implemented, while the

method for matching forward and reverse paths is
yet to be implemented.

1.1 Outline of this paper

Section 2 contains a brief description of round 1 of
SHA-1, summarizes previous research into MD5 and
SHA-1 and describes the notation. Section 3 describes
the basic branching components used in the forward
and reverse search trees. The issue of generating the
set of XOR-additive differences corresponding to a
fixed additive difference is addressed in Section ??.
Section 5 describes the static branching, which is the
most complicated part of the search. Section 8 de-
scribes how forward and reverse differential paths can
be compared to find a match.

2 Description of SHA-1

Where possible, this description mirrors the notation
in [23], and describes only those portions of SHA-1 re-
quired to understand the current paper. The SHA al-
gorithms have four phases; padding, parsing, message
scheduling and register update. The register-update
function is called the step function in this paper. The
padding and parsing takes a message of less than 264

bits and creates a sequence of 512-bit message blocks.
The padding and parsing are beyond the scope of this
paper. The message scheduling expands the message
block into a sequence of 80 expanded message words
mi, 0 ≤ i ≤ 79. The step function is applied 80 times,
processing the message blocks in sequence to trans-
form a 160-bit input chaining variable into a 160-bit
output chaining variable. The 80 steps are divided
into four Rounds of 20 steps each. This paper ad-
dresses only Round 1 (the first 20 of these steps).

Message expansion: The message block is di-
vided into sixteen 32-bit words which are assigned
to (m0, . . . , m15). The remaining message words mi,
16 ≤ i ≤ 79, are obtained iteratively as:

mi = (mi−3 ⊕mi−8 ⊕mi−14 ⊕mi−16) � 1.

Step Function for Round 1 (Steps 1-20): At
step i, the step function uses the expanded mes-
sage word mi−1 to transform five input state vari-
ables (ai−1, bi−1, ci−1, di−1, ei−1), into five outputs
(ai, bi, ci, di, ei). The initial state (a0, b0, c0, d0, e0) is
obtained by partitioning the input chaining variable.
For Steps 1 to 20, the step function generates the next

state as follows:

ai = ROTL(ai−1, 5) + fi−1 + ei−1

+ mi−1 + ki

where fi−1 = IF (bi−1, ci−1, di−1)
= (bi−1 ∧ ci−1) ∨ ((¬bi−1) ∧ di−1);

bi = ai−1;
ci = ROTL(bi−1, 30);
di = ci;
ei = di.

where ki = 0x5a827999. Steps 21 to 80 differ from
Steps 1 to 20 in the function used to combine
bi−1, ci−1, di−1, and the value of the constant ki. The
function fi−1 acts bitwise: that is fi−1[j] depends
only on bi−1[j], ci−1[j] and di−1[j].

2.1 Previous Work: A Quick Summary

Here is a quick summary of the previous analysis of
MD5 and SHA-1.
MD5:

– Wang et al [21] presented collisions at the Crypto
2004 Rump Session; the details are found in the
EUROCRYPT 2005 paper [22].

– Various researchers implemented the collision
search [13, 9], some noting additional improve-
ments.

– Some researchers have focussed on methods for
improving the message modification method [10,
11, 17, 19].

– Others have sought to more accurately describe
the necessary conditions [25, 18].

SHA-1.

– Biham and Chen [1] published results on SHA-0
at CRYPTO’2004.

– At the CRYPTO’2004 rump session, Joux [7]
presented a SHA-0 collision, while Biham and
Chen [2] presented independent results on full
SHA-0 and reduced SHA-1 (SHA-1 with a re-
duced number of steps). The techniques (jointly
published at EUROCRYPT 2005 [3]) are based
on following a differential path of minimal weight
across all steps of the hash function.

– At CRYPTO 2005, Wang, Yin and Yu presented
a new approach for finding collisions of SHA-
0 [23] and SHA-1 [24] (including 58-step reduced
SHA-1). This approach uses a differential path of
minimal weight for Rounds 2-4 and a high-weight
differential path through the first round.

– Julta and Patthak [8] show that the differential
path in [24] has minimal weight in Rounds 2-4.

– The paper of Sugita, Kawazoe and Imai [20] im-
proves on the message modification technique by
using using Guassian elimination. The approach
of [20] using “neutral bits” and “semi-neutral
bits” shares similarities with the “tunnels” ap-
proach applied by Klima [10] to MD5.

The various approaches to improving the collision
search (in particular, the various message modifica-
tion techniques) have the effectiveness limited by the
conditions on the internal variables required for the
differential path through Round 1. The message mod-
ification techniques could achieve a greater advantage
if other differential paths (through Round 1) could be
found. For example, there may be differential paths
that place fewer conditions on the internal variables,
or differential paths that are (in some way) more opti-
mized for the particular technique This is one of the
motivations for this research. Our research has not
yet reached the point where differential paths can be
optimized for particular message modification tech-
niques.

2.2 Notation

The word size for SHA-1 is n = 32. A differential
analysis follows the differences between internal val-
ues that occurs when processing two message blocks
M ′ and M ′′. For an internal variable denoted (for ex-
ample) by x, the value of the internal variable when
processing M ′ is denoted by x′, and the value of the
internal variable when processing M ′′ is denoted by
x′′. When processing M ′ and M ′′, we write

∆+x = x′′ − x′ (mod 2n) ∈ Z2n ;
∆⊕x = x′′ ⊕ x′ ∈ GF (2n);

∆+x is the additive difference in x, while ∆⊕x is the
XOR difference in x, We need a way to represent
conditions on values x′ and x′′ of the form

– ∆+x ∈ Z2n is fixed to a known value;
– ∆⊕x ∈ GF (2n) is fixed to a known value;
– the values of some bits where x′[j] = x′′[j] ∈ 0, 1

are fixed to a known value.

To represent such conditions efficiently, we use a no-
tation we have called nabla (∇) notation.3 Nabla no-
tation uses a symbol in the set Q = {@, +, -, *, 0, 1}
to represent information about each bit position of x′

and x′′. For a particular bit position j, the following
notation is used:
3 The term “nabla” has been used because \nabla is the

LaTex2e command for the symbol ∇.

– ∇x[j] ↪→ @: assign (x′[j], x′′[j]) ∈ {(0, 1), (1, 0)}
– ∇x[j] ↪→ +: assign (x′[j], x′′[j]) = (0, 1);
– ∇x[j] ↪→ -: assign (x′[j], x′′[j]) = (1, 0);
– ∇x[j] ↪→ *: assign x′[j] = x′′[j];
– ∇x[j] ↪→ 0: assign x′[j] = x′′[j] = 0;
– ∇x[j] ↪→ 1: assign x′[j] = x′′[j] = 1.

Note that ∇x[j] ↪→ @ is equivalent to assigning the
condition ∆⊕x[j] = 1, while ∇x[j] ↪→ * is equivalent
to assigning the condition ∆⊕x[j] = 0.

For a vector α ∈ Qn, and variable x ∈ GF (2n),
∇x ↪→ α denotes the n conditions ∇x[j] ↪→ α[j],
j ∈ [0, n − 1] and α is called a nabla representation
for the variable x.

For a vector α ∈ Qn, the corresponding XOR dif-
ference, denoted α⊕ has α⊕[j] = 1 if α[j] ∈ {@,+,-},
and α⊕[j] = 0 otherwise. That is, if ∇x ↪→= α, then
∆⊕x = α⊕. Thus a nabla representation α for x al-
ways fully specifies ∆⊕x. The bit positions j where
∇x[j] ∈ {@,+,-} are the dynamic bit positions of x,
and the bit x[j] is said to be dynamic. The bit po-
sitions j where ∇x[j] ∈ {*,0,1} are the static bit
positions of x, and the bit x[j] is said to be static.

For α with α[j] 6= @, ∀j 6= (n−1), the corresponding
additive difference, denoted α+ can be computed as
follows: if α[n− 1] ∈ {*,0,1} then

α+ =
∑

j:α[j]∈{+,-}
α[j] · 2j (mod 2n),

while if α[n− 1] ∈ {@,+,-}, then

α+ = 2n−1 +
∑

j:α[j]∈{+,-}
α[j] · 2j (mod 2n),

Thus, provided a nabla representation α for x has
α[j] 6= @, ∀j 6= (n − 1), then the nabla representa-
tion fully specifies ∆+x. In most cases in this anal-
ysis, the nabla representation will always fully spec-
ify ∆+x. Note also that if y = ROTL(x, r), then
∇y ↪→ ROTL(∇x, r).

The nabla notation is useful for representing the
propagation of additive and XOR differences through
the SHA-1 step function because of the properties
preserved by addition and rotation, and the ability
to analyse the nabla representation of the inputs and
outputs of the IF function on a bit-by-bit basis.

3 Search Trees

Recall that our goal is to create a forward search tree
and a reverse search tree, and then compare differen-
tial paths in the leaves of the two trees to look for a
match.

The branches and leaves of a sub-tree starting from
a particular branching point will satisfy the set of con-
ditions that have been applied up to that branching
point. Each branching point corresponds to adding
a new condition to the set of existing conditions. As
the search tree searches through the sub-branches,
the search must ensure that the existing conditions
are not contradicted. For example, once an additive
difference in a particular variable is assigned for a
particular branch, then all branches in the sub-tree
proceeding from that branch must respect that con-
dition. The search tree must respect those conditions
applied below the branching point.

In terms of the nabla notation, this means that
once a condition of the form ∇x[j] ∈ {+,-,0,1}
is assigned, then this condition cannot be altered
in the sub-tree above where the assignment occurs.
However, if a condition of the form ∇x[j] ↪→ “@”
is assigned, then this condition can be refined to
∇x[j] ↪→ “+” or ∇x[j] ↪→ “-” at a branching point
in the sub-tree above where the assignment occurs.
Similarly , if a condition of the form ∇x[j] ↪→ “*”
is assigned, then this condition can be refined to
∇x[j] ↪→ “0” or ∇x[j] ↪→ “1” at a branching point in
the sub-tree above where the assignment occurs.

There are also variables for which the conditions
only specify the additive difference ∆+x, rather than
assigning conditions to individual bits ∇x[j]. This is
discussed in further detail below.

3.1 Types of Branches in the Search Tree

There are four types of branching points in these
search trees:

XOR-to-Additive Branching: This occurs when
the XOR difference in a particular variable has
been specified for this sub-tree, but there are va-
riety of additive differences that are still possible.
For example, at the beginning of the search we
specify the bits of the message words for which
there is an XOR difference: if there is an XOR dif-
ference at position j, then we specify µi−1[j] ↪→
“@”; if these is no XOR difference at position j,
then we specify µi−1[j] ↪→ “*”. For those bit posi-
tions j where we specify µi−1[j] ↪→ “*”, a further
refinement to µi−1[j] ↪→ “0”, or µi−1[j] ↪→ “1”,
has no effect on the additive difference in mi−1,
so there is no point in creating separate paths
for µi−1[j] ↪→ “0”, and µi−1[j] ↪→ “1”. However,
for those bit positions where µi−1[j] = “@”, then
a refinement µi−1[j] ↪→ “+”, or µi−1[j] ↪→ “-”,
has a significant effect on the additive difference
in mi−1 (MSB j = (n − 1) excepted.) Thus, for

each bit position j < (n−1) where µi−1[j] = “@”,
we get a branching into two sub-trees. If there are
numdiff such bit positions, then we get a branch-
ing into 2numdiff sub-trees. Note that XOR-to-
Additive branching places no conditions on static
bits, other than specifying which bit positions are
static.

Additive-to-XOR Branching: This occurs when
the additive difference in a particular variable
has been specified for this sub-tree, but there
are variety of XOR differences (and correspond-
ing nabla representations) that are still possible.
To determine the additive difference in the out-
put fi−1 from the IF function requires (in most
cases) the nabla representation of all input vari-
ables be specified. Hence, the search tree should
search all possible XOR differences available for
the input differences. For example, if the search
tree has assigned ∆+ai−1 = +1, then branching
points in the corresponding sub-tree can corre-
spond to nabla representations for ∇bi are of the
form:
– (*******.*+): a single “+” in the LSB with

all ”*” to the left);
– (*..*+--..-): a single “+” with all ”*” to the

left and all ”-” to the right;
– (+------..-): a single “+” in the MSB with

all ”-” to the right; and
– (-------..-): all “-”, which has the same

XOR difference as the previous nabla repre-
sentation

Section 4 describes the method used to find the
nabla representations corresponding to a given
additive difference. Note that an Additive-to-
XOR branching places no conditions on static
bits, other than specifying which bit positions are
static.

Static Branching: This branch occurs as a result
of the IF function. If the value(s) of static bits of
bi−1, ci−1, di−1 can affect the additive difference
int the output fi−1 from the IF function, and if
those static bits have not already been assigned,
then sub-branches can be created for the possible
choice of the static bits. This branching is very
complex; the details discussed in a separate sec-
tion (Section 5). Note that the values of static
bits affect the differential path only through the
IF function.

Additive-Rotation Branching: This branch oc-
curs only with the forward tree search. This
occurs when the additive difference in ai−1

has been specified for this sub-tree, but there
are a variety of possible additive differences
for ROTL(ai−1i, 5). For example, the following

nabla representations for ROTL(ai−1, 5) corre-
spond to ∆+ai−1 = +1:
– ∇ai−1 ↪→ (**..*+) will result in
∇ROTL(ai−1, 5) ↪→ (**..*+*****), with
additive difference ∆+ROTL(ai−1, 5) =
25. Similarly,(**..*+-),
(**..*+--),...,(*****+--..-), also result in
∆+ROTL(ai, 5) = 25.

– ∇ai ↪→ (-..--) will result in nabla represen-
tation ∇ROTL(ai, 5) ↪→ (-..--) which has
∆+ROTL(ai−1, 5) = 1.

– The remaining nabla representations, such
as ∇ai−1 ↪→ (****+--..-), result in
∆+ROTL(ai−1, 5) = 1 + 25.

There are only a few possible values for
∆+ROTL(ai−1, 5) corresponding to a particu-
lar additive difference ∆+ai−1. The additive dif-
ference in ∆+ROTL(ai−1, 5) will affect additive
differences in ∆+ai+1; thus, the choice of ∇ai

can result in a variety of additive differences
in ∆+ai. Each of the possible additive differ-
ences ∆+ai needs to be explored, so our search
tree includes a branch for each possible value of
∆+ROTL(ai−1, 5).

The Additive-to-XOR, XOR-to-Additive and
Additive-Rotation branching are dynamic branchings
because these branchings only consider the allocation
of dynamic bits.

3.2 The Forward Search Tree

The forward search tree determines the possible ad-
ditive differences ∆+ai coming out of step i, and for
each sub-branch, the search tree proceeds to the fol-
lowing step (step (i + 1)) to determine the possible
additive differences ∆+ai+1. The forward search tree
uses the relation:

∆+ai = ∆+ROTL(ai−1, 5) + ∆+mi−1 (1)
+ ∆+ei−1 + ∆+fi−1.

The following algorithm can be used to “add” two
nabla representations to get a third nabla represen-
tation that has additive difference equal to the sum of
the input additive differences. This can be preferable
to converting the nabla representations to an additive
difference, and makes it easier to see where differences
are occuring.

Procedure: Add α, β to produce ω = α � β
Inputs: Nabla representations alpha[],beta[]
Outputs: Nabla representation omega[]
Algorithm

int carry=0;
int j;
int a_rep, b_rep, carry;

for(j=0; j<n; j++){
switch(alpha[j]){
case ’@’: a_rep= 1; break; /*MSB*/
case ’+’: a_rep= 1; break;
case ’-’: a_rep=-1; break;
default: a_rep= 0; break;

}
switch(beta[j]){
case ’@’: b_rep= 1; break; /*MSB*/
case ’+’: b_rep= 1; break;
case ’-’: b_rep=-1; break;
default: b_rep= 0; break;

}
switch(a_rep + b_rep + carry){
case -3: omega[j]=’-’; carry=-1; break;
case -2: omega[j]=’*’; carry=-1; break;
case -1: omega[j]=’-’; carry= 0; break;
case -0: omega[j]=’*’; carry= 0; break;
case 1: omega[j]=’+’; carry= 0; break;
case 2: omega[j]=’*’; carry= 1; break;
case 3: omega[j]=’+’; carry= 1; break;

}
}
return(omega)

3.3 The Reverse Search Tree

Like the forward search tree, the reverse search tree
consists of branches alternating between reverse dy-
namic branching components and static branching
components. The reverse search treedetermines the
possible additive differences ∆+ei−1 going into Step
i, and for each sub-branch, the search tree proceeds to
the following step (Step (i−1)) to determine the pos-
sible additive differences ∆+ei−2. The reverse search
tree uses the relation:

∆+ei−1 = ∆+ai −∆+ROTL(ai−1, 5)
−∆+mi−1 −∆+fi−1.

The modular subtraction can be implemented us-
ing the nabla representation addition “�” (described
above in Section 6) in combination with a negation
operation (negation is achieved by reversing the sign
of all dynamic bits).

Each step examined by the forward tree and re-
verse tree includes a dynamic branching compo-
nent (including Additive-Rotation branching, XOR-
to-Additive branching, and Additive-to-XOR branch-
ing) followed by a static branching component. The

conditions on bi−1, ci−1 and di−1 prior to static
branching are denoted using ∇bini−1, ∇cini−1 and
∇din

i−1, and the conditions after static branching are
denoted ∇bout

i−1 , ∇cout
i−1 and ∇dout

i−1 .

3.4 Reconstruction Information

As the search algorithms generate forward and re-
verse paths, there are several reasons for recording
information about the path. Firstly, in order to match
forward paths to reverse paths we need to compare
the differential path at the step where the two paths
meet. Section 8 considers what “comparison informa-
tion” needs to be stored to match forward and reverse
paths.

Secondly, once a match is found between a forward
and reverse path, we then need to reconstruct the
full 20-step path. This “reconstruction information”
does not need to be stored in the same location as
the comparison information, provided the compari-
son information provides a means for locating the
reconstruction information. The reconstruction infor-
mation serves an addition purpose: if it is necessary
to stop the forward search or reverse search in the
middle of a search, then the reconstruction informa-
tion provides a “last known state” from which the
search can continue.

A differential path can be reconstructed if we can
un-ambiguously record the choice of branches at each
branch point. In the remainder of this section, we de-
scribe the method for recording branches for XOR-to-
Additive branching, Additive-to-XOR branching and
Additive-Rotation branching. Section 5 describes the
method used to record branches for Static Branching.
XOR-to-Additive branching. Assume ∆⊕x has
already been specified and ∆⊕x has weight w. To
identify the branch corresponding to a value of ∆+x,
it is sufficient to store the w signs (“+” or “-”) for
∇x[j] at those bits where ∆⊕x[j] = 1. This informa-
tion can be stored in a w-bit integer. In some cases,
the sign of an MSB difference does not need to be
specified, while in other cases the MSB difference does
need to be specified.

Additive-to-XOR Branching. The reconstruction
information needs to identify which value of∇x corre-
sponding to a given ∆+x is associated with the path.
Our reconstruction method requires a well-defined
ordering for the set of nabla representations (that
is, a way to define when one nabla representation
is greater than another). For a given additive differ-
ence, we generate and order the the corresponding set
of nabla representation using our well-defined order-
ing. The reconstruction information used to identify

an Additive-to-XOR branch is the position where the
nabla representation occurs in the ordered list.

Note that in the forward search, ∇bi must not only
correspond to both the correct additive difference for
ai−1, but also correspond to the correct additive dif-
ference for ROTL(ai−1, 5).

Additive-Rotation Branching. Similar to the
method used for the Additive-to-XOR branching we
generate and order the possible values of ∆+ri−1 cor-
responding to the additive difference for ai−1. To in-
dicate one of these additive-differences ∆+ri−1, we
store an index where the additive difference occurs in
the list.

4 Additive-to-XOR Branching

This section considers the question: how do we create
the set of nabla representations corresponding to a
particular additive difference?

We can begin by writing the additive difference D
modulo 2n in binary representation D =

∑
Dj2j ,

which then translates into a nabla representation
∇x[j] = + when Dj = 1 and ∇x[j] = * when Dj = 0.
This is then “reduced” to a nabla representation with
a smaller number of dynamic bits, but with equal ad-
ditive difference using the following rules:

– A “*” followed by a sequence of consecutive “+”
symbols can be translated into two “-” symbols:
“*++” can become “-*+”; “*+++” can become
“-**+”; “*++++” can become “-***+”; and so
forth.

– “-+” can be translated to “*-”.
– “+-” can be translated to “*+”.
– If the MSB is dynamic, then the sign can be

changed to see if this allows a reduction in the
number of dynamic bits.

By testing combinations of the above translations, we
obtain a “root” ∇x ↪→ χ that has a smaller number
of dynamic bits.

The next step is to use this root to find the possible
nabla representations. If If the root χ is w dynamic
bits then we create an array y[0], y[1], . . . , y[w − 1]
that stores the indices of the dynamic bits in χ, with
the indices arranged in increasing order. We can con-
sider χ as the sum of w component nabla representa-
tions, where the k-th component nabla representation
is

Xk = (*, . . . , *, χ[y[k]], *, . . . , *)

If χ[y[k]] = -, the we ca we can generate new nabla
representations equivalent to Xk by recursively ap-
plying the translation “*-” → “-+”. We let X

(j)
k de-

note the equivalent component nabla representation

consisting of one “-” symbol followed by j “+” sym-
bols. Similarly, if χ[y[k]] = +, then we let X

(j)
k denote

the equivalent component nabla representation con-
sisting of one “+” symbol followed by j “-” symbols.

Basically, we have carried the addition difference
to higher order bits. For each of X0, . . . , Xw−1, we
can create alternative nabla representations (with
identical additive difference) by adding together
(X(j[0])

0 , . . . , X
(j[w−1])
w−1), using the nabla representa-

tion addition algorithm in Section 6.
By generating all possible equivalent component

nabla representations for each Xk, we will gener-
ate all possible alternative nabla representations cor-
responding to the addition difference ∆+x = χ+.
Once j ≥ n − y[i], the difference will have been
carried passed the most significant bit, so it is
clear that j must be upper bounded by (n − y[i]).
However, the set of

∏w−1
i=0 (n − y[i]) combinations

(X(j[0])
0 , . . . , X

(j[w−1])
w−1) can result in duplicate alter-

native nabla representations (that is, two alternative
nabla representations that are equal).

For a first example, consider a case with X0 =
(..*..****-) and X1 = (..*..**-**). The alter-
native nabla representations produced by the above
technique includes the following duplicate alternative
nabla representations:

(*..***-++) � (*..*****-**) = (*..**-*++)
(*..**-+++) � (*..*****-**) = (*..**-*++)
(*..***-++) � (*..****-+**) = (*..**-*++)
(*..**-+++) � (*..****-+**) = (*..**-*++)

Note that for X
(j[0])
0 � X

(j[1])
1 we obtain no new rep-

resentations by considering j[0] > 2 = y[1]− y[0].
For a second example, consider a case with X0 =

(..*..****-) and X1 = (..*..**+**). The alter-
native nabla representations produced by the above
technique includes the following duplicate alternative
nabla representations:

(*..**-++) � (*..****+**) = (*..***++)
(*..***-+) � (*..****+**) = (*..***++)
(*..**-++) � (*..***+-**) = (*..***++)
(*..*-+++) � (*..***+-**) = (*..***++)

Once again, we obtain no new representations by con-
sidering j[0] > 2 = y[1] − y[0]. In the general case,
carrying a difference past the next dynamic bit in the
root representation (that is, using j[i] > y[i+1]−y[i])
can be shown to result in a duplicate nabla represen-
tation.

Additive-to-XOR Branching Algorithm

1. Find one nabla representation corresponding to
the additive difference (for example, using the
above technique at the beginning of this section:
translating the binary representation of the addi-
tive difference to a nabla representation consist-
ing only of + and * symbols).

2. Reduce this nabla representation to a root repre-
sentation χ with lower number of dynamic bits.

3. Create the array (y[0], y[1], . . . , y[w−1]) contain-
ing the indices of the dynamic bits of the root
representation χ.

4. For each combination of (j[0], j[1], . . . , j[w − 1])
in the range

0 ≤ j[i] ≤ y[i + 1]− y[i], 0 ≤ i ≤ w − 2;
0 ≤ j[w − 1] ≤ n− y[w − 1].

compute and store the nabla representation
�w−1

i=0 X
j[i]
i . �

5 Static Branching

At Step i, the static branching produces a set of
branches corresponding to distinct values of ∇fi−1.
(For the remainder of Section 5, the sub-script (i−1)
for b, c, d, f shall be implicit and will not be written).
The set of possible branches depends only on the in-
put nabla representations ∇bin, ∇cin, ∇din.

As a by-product of the bit-wise nature of the IF
function, the set of possible ∇f is produced by the
combinations of possible values ∇f [j] for each bit po-
sition j, 0 ≤ j ≤ n− 1. That is, the static branching
can be thought of as a set of n independent branch-
points corresponding to the n bit positions j.

The choice of possible values∇f [j] at bit position j

depends only on the combination of ∇bin[j], ∇cin[j],
∇din[j]. Each combination ∇bin[j], ∇cin[j], ∇din[j]
is dealt with in one of the cases shown in Table 1
and Table 1 of Section 5.2. These tables show the
branches that are possible for each case.

The complexity of the search algorithm is directly
related to the number of branches at each branch
point. It is essential that we minimize the number
of branches at each branch point. We now apply this
principle to the static branching. Recall that the pur-
pose of determining ∇f is to determine the value of
∆+f . The additive difference ∆+f is independent of
static bit values of f : that is, the specific value of
that static bit values is not relevant to the search for
differentials. Therefore, there is no advantage to dif-
ferentiating a branch with ∇f [j] = ‘*’ from a branch
with ∇f [j] = ‘0’ or a branch with ∇f [j] = ‘1’, since
all three branches result in the same value of ∆+f .

In order to reduce the number of branches searched,
all possible static values of ∇f [j] (for a given case)
are grouped into a single branch. Similarly, when ex-
amining the MSB (j = n− 1), note that all dynamic
values of ∇f [n − 1]produce identical values of ∆+f .
Hence, all possible dynamic values of ∇f [n − 1] (for
a given case) are grouped into a single branch.

For each j, the distinct branches are obtained by
apply additional conditions to the input nabla rep-
resentations ∇bin[j], ∇cin[j], ∇din[j]: the resulting
conditions are represented by ∇bout, ∇cout, ∇dout.

5.1 Relational Conditions

In some cases it is only necessary to assign values to
one static bit. For example, if (∇b[j],∇c[j],∇d[j]) =
(*,+,-), them ∇b[j] = “0”, would result in ∇f [j] =
“-”, while ∇b[j] = “1”, would result in ∇f [j] = “+”).

In other cases it is necessary to assign values to
two static bits. For example, if ∇b[j] ∈ {+,-}, and
(∇c[j],∇d[j]) = (*,*), then the four possible assign-
ments of 0,1 to ∇c[j] and ∇d[j] will have the follow-
ing effect of ∇f [j].

– (∇c[j],∇d[j]) = (0, 0), ⇒ ∇f [j] = 0.
– (∇c[j],∇d[j]) = (0, 1), ⇒ ∇f [j] = −∇b[j].
– (∇c[j],∇d[j]) = (1, 0), ⇒ ∇f [j] = ∇b[j].
– (∇c[j],∇d[j]) = (1, 1), ⇒ ∇f [j] = 1.

The values of ∇f [j] when ∇f [j] /∈ {+,-} have no
effect on ∆+f (which, after all, is the important
value). Thus, the two cases (∇c[j],∇d[j]) = (0, 0) and
(∇c[j],∇d[j]) = (1, 1) have the same effect on ∆+f .
Rather than consider the cases (∇c[j],∇d[j]) = (0, 0)
and (∇c[j],∇d[j]) = (1, 1) as distinct branches of the
search tree, it is more efficient to assign∇c[j] = ∇d[j]
for this sub-tree, and remember this while we search
in that sub-tree. There are other situations where is
desirable to assign ∇c[j] 6= ∇d[j] for a branch, and
remember this while we search in that sub-tree. We
term these “relational conditions”.

Relational conditions introduce additional com-
plexity because it is not obvious how the search
should remember which relational conditions have al-
ready been assigned. To implement this, we use two
arrays v0[] and v1[] and we keep a counter vc that
provides the index of the next unused elements in the
arrays v0[] and v1[]. The principle behind these two
arrays is that if a value is ever assigned to v0[index],
then v1[index] is automatically assigned the value
v1[index] = 1−v0[index]. We initialize v0[] with
lower case letters in order, and initialize v1[] with
upper case letters in order, with the knowledge that
the value of a lower case letter is the opposite value
of the corresponding lower case letter. For each state

variable x we assign an array to store ∇x and an
integer array xp[n].

– If bit j of variables x is completely specified (that
is, ∇x[j] ∈ {+,-,0,1}), then this value is stored
in the array for ∇x and we assign xp[j] = 0.

– If bit j of variables x is static, but undefined and
not related to any other variable, then we assign
∇x[j] = “*” and assign xp[j] = 0.

– If we wish to assign a condition where two static
values, for example ∇c[j] and ∇d[j] are equal
(but not specified to be 0 or 1), then we assign
cp[j] = dp[j] = +vc. The existence of a non-
zero integer in cp[j] is an indicator that the value
is related to another bit value. A positive value
cp[j] = k indicates that the search should look
in v0[k] to find information about cp[k], while
a negative value in cp[j] = k indicates that the
search should look in v1[k] to find information
about cp[k].
• If the search later need to assign a condi-

tion equivalent to specifying ∇c[j] = 1 or
∇d[j] = 1, then the search simply assigns
v0[k]=1, and v0[k]=0. Thereafter, the search
will read that both c[j] and d[j] have ∇c[j] =
∇d[j] = 1. Likewise if the search needs to as-
sign ∇c[j] = 0 or ∇d[j] = 0.

• It the search later needs to assign some bit
position j′ of another variable x as also equal
to ∇c[j] or ∇d[j], then the search can copy
the value from cp[j] to xp[j′].

• It the search later needs to assign some bit j′

of another variable x as different to ∇c[j] or
∇d[j], then the search can set xp[j′] = −cp[j].
This will then indicate to the search that the
value of xp[j′] is stored in v1[k].

– If the search wishes to assign a condition where
two static values, for example ∇c[j] and ∇d[j]
are not equal (but not specified to be specific val-
ues), then the search assigns cp[j] = +vc and
dp[j] = −vc, indicating that information about
c[j] is found in v0[vc], while information about
d[j] is found in v1[vc]. If the search needs to ap-
ply specify values to d[j] or c[j] at a later branch-
ing, then the same approach can be used as de-
scribed above.

5.2 Details of the Static Branching

Now that we have a method for remembering the re-
lational conditions, we can now describe the various
cases for Static Branching.

Table 1 and Table 2 contain all the neces-
sary details for possible combinations of values
∇(b[j], c[j], d[j]). Table 1 lists the cases where b[j] is

dynamic. Note that the sign of a dynamic bit of an
input to the IF function is always defined, so Ta-
ble 1 presumes that b[j] ∈ {+,-} (that is b[j] 6= ‘@’).
Table 2 lists the cases where b[j] is static. The con-
siderations for the static branching are quite compli-
cated, but quite easy to implement once the rules are
explicitly written out.

Each case allows between 1 and 3 branches; we de-
note the number of branches for position j by Br[j].
For each position j, each branch has a corresponding
branch index BI[j] in the range [0, Br[j]],for each
branch occurring at each bit position. Table 1 and
Table 2 lists the number of branches Br[j] for each
case, and the branch index assigned to each branch.
A record of the n static branch indices is sufficient to
determine ∆+f and assign any additional conditions
required for ∇bout, ∇cout and ∇dout.

We briefly discuss some cases to explain the tables.

Case 1: b[j] is dynamic. In this case, ∇f [j] is
affected by the values of both ∇c[j] and ∇d[j].

– Case 1a: ∇cin[j] ∈ {+,-,0,1} and ∇din[j] ∈
{+,-,0,1}. Since all input are fully specified, the
output ∇f [j] is also fully specified and there is
only one branch.

– Case 1b: ∇cin[j] = ‘*’ and ∇din[j] ∈
{+,-,0,1}. In this case the value of ∇f [j] is
affected by the choice of value for ∇cout[j] ∈
{0,1}. There is one branch with ∇cout[j] = ‘0’
and another branch with ∇cout[j] = ‘1’. Case 1c
is similar.

– Case 1d (Not MSB): ∇cin[j] = ∇din[j] = “*”,
0 ≤ j ≤ n − 2. In this case there are three
branches:
• (∇cout[j],∇dout[j]) = (v0[vc], v0[vc]); ⇒
∇f [j] = ‘*’.

• (∇cout[j],∇dout[j]) = (1, 0); ⇒ ∇f [j] =
∇b[j].

• (∇cout[j],∇dout[j]) = (0, 1); ⇒ ∇f [j] =
−∇b[j].

– Case 1d (MSB): ∇cin[j] = ∇din[j] = ‘*’. In
this case there are only two branches:
• (∇cout[j],∇dout[j]) = (v0[vc], v0[vc]); ⇒
∇f [j] = ‘*’.

• (∇cout[j],∇dout[j]) = (v0[vc], v1[vc])
This makes f [j] dynamic without specifying
the sign, which is acceptable for the MSB.

– Case 1e: ∇cin[j] ∈ {+,-,0,1} and ∇din[j] =
v0[x]. This case occurs only in the forward dif-
ferential. The two branches correspond to assign-
ing v0[x]=0 and v0[x]=1. Case 1e, 1i and 1j are
treated similarly.

Case Input ∇ New Conditions
c[j] d[j] Br BI c[j] d[j] v0 v1 ∇f [j]

1a +,-, +,-, 1 0 Det.
0,1 0,1

1b * +,-, 2 0 0 . . . Det.
0,1 1 1 . . . Det.

1c +,-, * 2 0 . 0 . . Det.
0,1 1 . 1 . . Det.

1d: * * 3 0 v0 v0 . . *

Not 1 1 0 . . ∇b[j]
MSB 2 0 1 . . −∇b[j]

1d: * * 2 0 v0 v0 . . *

MSB 1 v0 v1 . . @

1e +,-, v0 2 0 . . 0 (1) Det
,0,1 1 . . 1 (0) Det

1f +,-, v1 2 0 . . (1) 0 Det
,0,1 1 . . (0) 1 Det

1g: * v0 3 0 v0 . . . *

Not 1 . 1 0 (1) ∇b[j]
MSB 2 . 0 1 (0) −∇b[j]

1g: * v0 2 0 v0 . . . *

MSB 1 v1 . . . @

1h: * v1 3 0 v1 . . . *

Not 1 . 1 (1) 0 ∇b[j]
MSB 2 . 0 (0) 1 −∇b[j]

1h: * v1 2 0 v1 . . . *

MSB 1 v0 . . . @

1i v0 +,-, 2 0 . . 0 (1) Det
0,1 1 . . 1 (0) Det

1j v1 +,-, 2 0 . . (1) 0 Det
0,1 1 . . (0) 1 Det

1k: v0 * 3 0 . v0 . . *

Not 1 . 0 1 (0) ∇b[j]
MSB 2 . 1 0 (1) −∇b[j]

1k: v0 * 2 0 . v0 . . *

MSB 1 . v1 . . @

1l: v1 * 3 0 . v1 . . *

Not 1 . 0 (0) 1 ∇b[j]
MSB 2 . 1 (1) 0 −∇b[j]

1l: v1 * 2 0 . v1 . . *

MSB 1 . v0 . . @

Table 1. Static Branching when ∇bini−1[j] is dynamic

(that is, ∇bini−1[j] ∈ {+,-}. In this table, “Det.” denotes
that ∇fi−1[j] can be determined once the new conditions
have been assigned. References to v0 (v1) indicate a spe-
cific array entry v0[x] (v1[x]) respectively. In all cases

in this table, ∇bout
i−1 [j] = ∇bini−1[j].

Case Input ∇
c d Br BI ∇bout

i−1 [j] ∇f [j]

∇bini−1[j] = ‘*’

2a Static Static 1 0 * *

2b Static Dyn. 2 0 0 ∇d[j]
1 1 Static

2c Dyn. Static 2 0 0 Static
1 1 ∇c[j]

2d ∇c[j] = ∇d[j] 1 0 * ∇c[j]
(Not MSB) Both Dyn.

2e ∇c[j] 6= ∇d[j] 2 0 0 ∇din[j]

(Not MSB) Both Dyn. 1 1 ∇cin[j]

2f (MSB) Dyn. Dyn. 1 0 * Dyn.

∇bini−1[j] = ‘0’

3a Any Any 1 0 . ∇d[j]

∇bini−1[j] = ‘1’

3b Any Any 1 0 . ∇c[j]

Table 2. Static Branching when ∇bini−1[j] is static. In
this table, “Dyn.” represents the condition that the bit

position is dynamic. In all cases in this table, ∇cout
i−1 [j] =

∇cini−1[j] and ∇dout
i−1 [j] = ∇din

i−1[j].

– Case 1g (Not MSB): ∇cin[j] = ‘*’ and
∇din[j] = v0[x], 0 ≤ j ≤ n− 2. There are three
branches in this case:
• ∇c[j] = v0[x] = ∇d[j]; ⇒ ∇f [j] = ‘*’.
• (∇c[j], v0[x]) = (1, 0); ⇒ ∇fi[j] = ∇b[j].
• (∇c[j], v0[x]) = (0, 1); resulting in ∇fi[j] =
−∇b[j].

Cases 1h (Not MSB), 1k (Not MSB) and 1l (Not
MSB) are treated similarly.

– Case 1g (MSB): ∇cin[n−1] = ‘*’ and∇din[n−
1] = v0[x]. There are two branches in this case:
• ∇c[j] = v0[x] = ∇d[j]; ⇒ ∇f [j] = ‘*’.
• ∇c[j] = v1[vc] = 1 −∇d[j]; ⇒ ∇f [j] = ‘@’.

Acceptable for the MSB
Cases 1h (MSB), 1k (MSB) and 1l (MSB) are
treated similarly.

Case 2: ∇bin[j] = ‘*’. In this case, the search has
assigned b′[j] = b′′[j], but the specific value (0 or 1)
has not (yet) been assigned. In these cases, the IF
function either selects f ′[j] = c′[j] and f ′′[j] = c′′[j]
or selects f ′[j] = d′[j] and f ′′[j] = d′′[j].

– Case 2a: In this case, all inputs to IF are static,
so f [j] is static.

– Case 2b: c[j] is static, while d[j] is dynamic. In
this case, the choice for b[j] affects whether the
bit is static or dynamic: so there are two branches
here. Case 2c is similar.

– Case 2d: ∇cin[j] = ∇din[j] ∈ {+,-}. In this
case ∇f [j] = ∇cin[j] = ∇din[j] is independent of
the value of ∇bin[j]. Thus, there is no branching
resulting from this bit position.

– Case 2c: In this case, both cin[j] are din[j] are
dynamic, so f [j] must be dynamic. However, the
signs cin[j] are din[j] differ, so the choice for
bout[j] affects the sign of ∇f [j], resulting in two
branches here. Case 2c is similar.

– Case 2f (MSB): ∇c[j] ∈ {+,-} and ∇d[j] ∈
{+,-}. In this case, there is no need to specify
∇b[j] since both choices will result in f [j] being
dynamic, and for the MSB, the sign of the differ-
ence is irrelevant.

Case 3: ∇bin[j] ∈ {0,1}. In these cases, the value
of ∇b[j] is already specified, so the choice of input
(c[j] or d[j]) is already fixed. Hence, there is only one
branch for each of these cases.

5.3 Reconstruction Infromation

In order to record the choice of static branching for all
n bit positions in an efficient manner, it is sufficient
to store the integer

σ =
n−1∑
j=0

BI[j] ·

(
j−1∏
k=0

Br[k]

)
.

The static branch indices are extracted from σ using
the following algorithm

1. Set j = 0 and s = σ.
2. From ∇bin[j], ∇cin[j], ∇din[j], identify the cor-

responding case in Table 1 or Table 2, and obtain
Br[j].

3. Extract BI[j] = s (mod Br[j]).
4. Compute s = (s−BI[j])/Br[j].
5. Increment j and return to Step 2.

6 The Forward Search Tree

The forward search tree begins the differential path at
the beginning of step 1. When searching for a forward
differential, the inputs are the sequence of XOR dif-
ferences in the expanded message words {∆⊕mi−1 =
µi−1,⊕} and the sequence of additive differences in
the chaining variable (the input to the first round):

(∆+a0,∆+b0,∆+c0,∆+d0,∆+e0)
= (α0,+, β0,+, γ0,+, δ0,+, ε0,+).

Since a differential may form part of a multi-
block collision, the search should be able to con-
sider cases where non-zero additive differences are al-
ready present in the chaining variable.4 The forward
search determines the possible sequence of differences
{∆+ai}; progressively determining the conditions re-
quired for each sequence.

6.1 Branches in Step 1

From Equation (1) we obtain:

∆+a1 = ∆+ROTL(a0, 5) + ∆+m0 + ∆+e0 + ∆+f0.

Before the search can determine ∆+a1, the search
must consider the possible additive differences
∆+ROTL(a0, 5), ∆+m0, ∆+e0 and ∆+f0. Ev-
ery time there is more than one option for
∆+ROTL(a0, 5), ∆+m0, ∆+e0 or ∆+f0, there is a
branching point and there is a choice of new sub-
trees to search. The following branching points can
occur during Step 1:

– Forward Dynamic Branching. In our im-
plementation, the various sub-branches result-
ing from the dynamic branching (Additive-
Rotation branching, XOR-to-Additive branching,
and Additive-to-XOR branching) are generated
in a single component.
• Additive-Rotation Branching: The

search considers the possible values for
∆+ROTL(a0, 5) corresponding to the spec-
ified additive difference in a0. For each
sub-branch, the values for ∇a0 = ∇b1 = . . .
are restricted to the those that result in the
specific value for ∆+ROTL(a0, 5) associated
with that sub-branch.

• XOR-to-Additive Branching: The search
generates a new sub-branch for each of the
values for ∆+m0 that can be generated when
the pair m′

0,m
′′
0 has the specified XOR differ-

ence ∆⊕m0 = µ0,⊕. The sign of MSB differ-
ences do not need to be specified.

• ∆+e0 = ε0,+ is a specified input.
• Additive-to-XOR Branching: The search

generates a new sub-branch for each possible
nabla representation ∇bin0 , ∇cin0 , and ∇din

0

that are input to the IF function. These XOR
differences must conform to the specified val-
ues for ∆+bin0 = β0,+, ∆+cin0 = γ0,+, and

4 Most multi-block collisions specify the additive differ-
ences in the the chaining variable. Some specify the
XOR differences, but this need not be the case. For
this reason, we shall assume that the XOR differences
in the input to the first round are unknown.

∆+din
0 = δ0,+. The sign of each dynamic

bit in the nabla representation (including the
MSB) should to be specified in order to de-
termine all possible values for ∆f0.

– Static Branching: The static branching pro-
cesses the input nabla representations ∇bin0 ,
∇cin0 , and ∇din

0 and produces a set of branches,
each corresponding to a possible value of ∆+f0

and some new conditions represented by ∇bout
0 ,

∇cout
0 , and ∇dout

0 .
– Compute ∆+a1: The search can now compute

∆+a1 from the values of ∆+ROTL(a0, 5), ∆+m0,
∆+e0 and ∆+f0 that have been determined for
this branch.

6.2 Branches in Step 2

The following information is passed from the exami-
nation of Step 1 to the examination of Step 2: ∆+a1,
∆+a0, ∆+ROTL(a0, 5), ∇bout

0 , ∇cout
0 , and ∇dout

0 .

– Forward Dynamic Branching
• Additive-Rotation Branching:

∗ The search considers the possible values
for ∆+ROTL(a1, 5) corresponding to the
additive difference in a1 determined dur-
ing the branching in the previous step.

• XOR-to-Additive Branching: The search
generates a new sub-branch for each of the
possible values for ∆+m1.

• ∆+e1 = ∆+d0 is a specified input.
• Additive-to-XOR Branching.

∗ In the previous step, the search already
assigned the dynamic bits and some static
bits of b0 and c0 for this branch. Thus
the dynamic bits and some static bits of
cin1 = ROTL(bout

0 , 30), and din
1 = cout

0

are already specified. There is no branch-
ing associated with determining the dy-
namic bits of cin1 and din

1 .
∗ Regarding, ∇bin1 , recall that the

Additive-Rotation branching in the
previous step restricted the nabla rep-
resentations ∇a0 = ∇bin1 to those
that resulted in a specific value for
∆+ROTL(a0, 5). The search assigns a
sub-branch for each such ∇bin1 .

– Static Branching As for Step 1.
– The search can now compute ∆+a2.

6.3 Branches in Step i, 2 ≤ i ≤ s.

The following information is passed from the exam-
ination of Step (i − 1) to the examination of Step i:

∆+ai−1, ∆+ai−2, ∆+ROTL(ai−2, 5), ∇bout
i−2 , ∇cout

i−2 ,
and ∇dout

i−2 .

– Forward Dynamic Branching
• Additive-Rotation Branching:

∗ The search considers the possible values
for ∆+ROTL(ai−1, 5) corresponding to
the additive difference in ai−1 determined
during the branching in the previous step.

• XOR-to-Additive Branching: The search
generates a new sub-branch for each of the
values for ∆+mi−1.

• ∆+ei−1 = ∆+di−2 is derived directly from
∇dout

i−2 .
• Additive-to-XOR Branching.

∗ Regarding, ∇cini−1 and ∇din
i−1, simply as-

sign ∇cini−1 = ROTL(∇bout
i−2 , 30), and

∇din
i−1 = ∇cout

i−2 ..
∗ Regarding, ∇bini−1, recall that the

Additive-Rotation branching in the
previous step restricted the nabla rep-
resentations ∇ai−2 = ∇bini−1 to those
that resulted in a specific value for
∆+ROTL(ai−2, 5). The search assigns a
sub-branch for each such ∇bi−1.

– Static Branching As for Step 1.
– The search can now compute ∆+ai.

The forward search tree consists of branches alter-
nating between forward dynamic branching compo-
nents and static branching components. When the
search reaches the specified step, then the search tree
ends at a leaf. At the leaf, before proceeding to the
next leaf, the search outputs the resulting conditions
on the values (as, bs, cs, ds, es) to be matched against
the reverse differentials, and reconstruction informa-
tion. After exhausting all sub-branches at a partic-
ular dynamic or static branching, the search returns
down (towards the root of the tree) to the previous
branching, and takes the next sub-branch from there.

7 The Reverse Search Tree

Like the forward search tree, the reverse search tree
consists of branches alternating between reverse dy-
namic branching components and static branching
components. The reverse search tree is somewhat sim-
pler than the forward search tree since there is no
need to consider addition-rotation branching for ei−1.
Note that we consider the value of di−2 = ei−1 as
an input to the IF function in round (i − 1) before
we consider ROTL(ai−5, 5) = ROTL(ei−1, 7), and to
determine the static branches we must have already
fully specified the XOR bit differences.

With the reverse search tree, we begin the dif-
ferential at the end of step 20. When searching for
a reverse differential, the inputs are the sequence
of XOR differences in the expanded message words
{∆⊕mi− = µi−1,⊕} and the sequence of differences in
the the input to the second round. The nature of the
intended differential path through Round 2 (steps 21
to 40) means that conditions on (a20, b20, c20, d20, e20)
are typically XOR differences, so the input conditions
for (a20, b20, c20, d20, e20) are of the form

(∆⊕a20,∆⊕b20,∆⊕c20,∆⊕d20,∆⊕e20)
= (α20,⊕, β20,⊕, γ20,⊕, δ20,⊕, ε20,⊕).

Note that b20 = a19, c20 = ROTL(a18, 5), d20 =
ROTL(a17, 5), and e20 = ROTL(a16, 5). Thus, our
“initial conditions” already specify a significant num-
ber of the conditions required in rounds 16 to 20.

7.1 Step 20

Consider reversing step 20:

∆+e19 = ∆+a20 −∆+ROTL(a19, 5)
−∆+m19 −∆+f19.

Before the search can determine ∆+e19, the search
must consider the possible additive differences
∆+a20, ∆+ROTL(a19, 5), ∆+m19 and ∆+f19.

– Reverse Dynamic Branching. This first step
considered in the reverse search consists mainly of
XOR-to-Additive branches, since the initial con-
ditions are termed exclusively in terms of XOR
differences.
• XOR-to-Additive Branching:

∗ The search considers the possible values
for ∆+a20 correspond to the specified
XOR difference ∆⊕a20 = α20,⊕. This will
result in specifying all dynamic bits of a20

(MSB excepted).
∗ The search considers the possible values

for ∆+ROTL(a19, 5) corresponding to
the specified XOR difference in ∆⊕b20 =
β20,⊕.

∗ The search generates a new sub-branch
for each of the possible values for ∆+m19.

∗ The search generates a new sub-branch
for each possible nabla representation
∇bin19 , ∇cin19 , and ∇din

19 . These additive
differences must conform to the speci-
fied values for ∆⊕b19 = ∆⊕c20 = γ20,⊕,
∆⊕c19 = ∆⊕d20 = δ20,⊕, and ∆⊕d19 =
∆⊕e20 = ε20,⊕ given in the input condi-
tions. The sign of each dynamic bit in the

nabla representation (including the MSB)
should to be specified in order to deter-
mine all possible values for ∆f19.

– Static Branching: As for the forward search ,
the static branching processes the input nabla
representations ∇bin19 , ∇cin19 , and ∇din

19 and pro-
duces a set of branches, each corresponding to a
possible value of ∆+f19 and some new conditions
represented by ∇bout

19 , ∇cout
19 , and ∇dout

19 .
– The search can now compute ∆+e19 from the

values of ∆+a20, ∆+ROTL(a19, 5), ∆+m19, and
∆+f19 that have been determined for this branch.

7.2 Step 19

Each combination of these branches has the potential
to result in a distinct ∆+e19. Now, let us look at the
next step down (Step 19):

∆+e18 = ∆+a19 −∆+ROTL(a18, 5)
−∆+m18 −∆+f18

– Reverse Dynamic Branching
• XOR-to-Additive Branching Recall that

∆⊕a19 = ∆⊕b20 = β20,⊕ was specified in
the initial conditions. In order to specify
∆+ROTL(a19, 5) in step 20,the search spec-
ifies the signs of the all dynamic bits of a19,
with the exception of bit 27 (if bit 27 is
dynamic: that is, if β20,⊕[27] = 1). Thus,
β20,⊕[27] = 1, then the search is required to
consider the two branches corresponding to
∇a19[27] = +, and ∇a19[27] = -. Otherwise,
there is only one branch.

• Since we fully specify the dynamic bits of
b19 = a18 in analysing step 20, this will fully
define ∆+ROTL(a18, 5).

• The search generates a new sub-branch for
each of the possible values for ∆+m18.

• Additive-to-XOR Branching The search
considers the possible values for ∇din

18 corre-
sponding to the additive difference ∆+d18 =
∆+e19 determined after the branching in step
20.

• Assign∇bin18 = ROTL(∇cout
19 , 2), and∇cin18 =

∇dout
19 .

– Static Branching: As for forward search.
– The search can now compute ∆+e18.

7.3 Step i, i ≤ 18

We now consider the general case for Step i, i ≤ 18:

∆+ei−1 = ∆+ai −∆+ROTL(ai−1, 5)
−∆+mi−1 −∆+fi−1.

– Reverse Dynamic Branching
• ∆+ai is fully specified by ∇bout

i+1 .
• ∆+ROTL(ai−1, 5) is fully specified by∇bout

i .
• The search generates a new sub-branch for

each of the possible values for ∆+mi−1.
• Additive-to-XOR Branching The search

considers the possible values for ∇din
i−1 corre-

sponding to the additive difference ∆+di−1 =
∆+ei determined after the branching in step
(i + 1).

• Assign ∇bini−1 = ROTL(∇cout
i , 2), and

∇cini−1 = ∇dout
i .

– Static Branching: As for forward search.
– The search can now compute ∆+ei−1.

8 Matching Forward and Reverse
Differential Paths

Now that we can create forward and reverse paths,
the next piece in the puzzle is to determine when a
forward path and reverse path match up.

A forward path ends with the following conditions
on the resulting state:

– ∆+as = α
(f)
+ , ∆+bs = β

(f)
+ ;

– ∇cs ↪→ γ(f), ∇ds ↪→ δ(f), ∇es ↪→ ε(f);
– Arrays v0(f)[] and v1(f)[].

A reverse path ends with the following conditions on
the resulting state:

– ∇as ↪→ α(r), ∇bs ↪→ β(r), ∇cs ↪→ γ(r),
∇ds ↪→ δ(r);

– ∆+es = ε
(r)
+ ;

– Arrays v0(r)[] and v1(r)[].

In order for a forward path and reverse path to
form a full 20-step path from (a0, b0, c0, d0, e0)
to (a20, b20, c20, d20, e20), the conditions on
(as, bs, cs, ds, es) required by both the forward
path and reverse path must be satisfied. If the
conditions on (as, bs, cs, ds, es) required by both the
forward path and reverse path can be satisfied, then
we will say that the two paths are compatible.

8.1 Integrating Forward and Reverse Paths

Table 3 shows how compatible forward and reverse
paths interact. The columns headed by ’f’ refer to
conditions related to the forward path, which col-
lumns headed by ‘r’ refer to conditions related to the
reverse path. The conditions on each internal variable
falls into one of the following categories:

– (f,r) = (∇, ·): (that is, the ‘f’ column contains a
∇ and the ’r’ column contains a ‘·’). The forward
path imposes “nabla” conditions (XOR and ad-
ditive differences) and the reverse path imposes
no conditions.

– (f,r) = (∇,+): The forward path imposes nabla
conditions and the reverse path must agree with
the additive differences.

– (f,r) = (∇,∇): Both the forward path and reverse
path impose nabla conditions.

– (f,r) = (+,∇): The reverse path imposes nabla
conditions and the forward path must agree with
the additive differences.

– (f,r) = (·,∇). The reverse path imposes nabla
conditions, and the forward path none.

Step ai bi ci di ei

i f r f r f r f r f r

s− 5 ∇ · ∇ · ∇ · ∇ · ∇ ·
s− 4 ∇ + ∇ · ∇ · ∇ · ∇ ·
s− 3 ∇ ∇ ∇ + ∇ · ∇ · ∇ ·
s− 2 ∇ ∇ ∇ ∇ ∇ + ∇ · ∇ ·
s− 1 + ∇ ∇ ∇ ∇ ∇ ∇ + ∇ ·

s + ∇ + ∇ ∇ ∇ ∇ ∇ ∇ +

s + 1 · ∇ + ∇ + ∇ ∇ ∇ ∇ ∇
s + 2 · ∇ · ∇ + ∇ + ∇ ∇ ∇
s + 3 · ∇ · ∇ · ∇ + ∇ + ∇
s + 4 · ∇ · ∇ · ∇ · ∇ + ∇
s + 5 · ∇ · ∇ · ∇ · ∇ · ∇

Table 3. Integrating conditions from a forward path and
compatible reverse path. Only steps (s− 5) to (s + 5) are
shown. See Section 8.1 for notation.

8.2 Compatibility Conditions

Requirements for as, bs and es. The forward
path imposes the more flexible conditions of the form
∆+as = α

(f)
+ . For the conditions on as to be satisfied

by both paths, it is sufficient to confirm that α(r)

corresponds to an additive difference equal to α
(f)
+ .

Consequently, it is sufficient for the reverse search to
store α

(r)
+ rather than the whole nabla representation

α(r). Similarly, the reverse search need only store β
(r)
+

to compare with β
(f)
+ , and the forward search need

only store ε
(f)
+ to compare with ε

(r)
+ .

Requirements for Variables cs and ds. The for-
ward path imposes the conditions ∇cs ↪→ γ(f),
∇ds ↪→ δ(f), and the reverse path imposes the condi-
tions ∇cs ↪→ γ(r), ∇ds ↪→ δ(r). The first few require-
ments for compatibility are:

– Rule 1: The static and dynamic bits of γ(f) and
γ(r) must occur in the same positions; and

– Rule 2: The static and dynamic bits of δ(f) and
δ(r) must occur in the same positions.

– Rule 3: The paths are not compatible if
(γ(f)[j], γ(r)[j]) ∈ {(+,-),(-,+)} for some j.

– Rule 4: The paths are not compatible if
(δ(f)[j], δ(r)[j]) ∈ {(+,-),(-,+)} for some j.

There are not additional tests required for dynamic
bit positions. It remains to describe when conditions
on static bits allow compatible paths. The main ob-
stacle to this is the relational conditions. These cor-
respond to bit positions contains a pointer to an ele-
ment of the v0 or v1 arrays.

In many cases, the conditions are further refined by
in the arrays are refined assigning specific values (“0”
or “1”) to elements of the v0 or v1 arrays. Such values
can be simply copied to the corresponding positions
in the nabla representations. Where the conditions
are not further refined, we simply assign “*” to the
corresponding positions in the nabla representations:
and address the relational conditions independently
as required. Let γ(f), γ(r), δ

(f)
, δ

(r)
denote the nabla

representations resulting after γ(f), γ(r), δ(f), δ(r),
have the values “*”, “0” or “1” substituted (as ap-
propriate) for pointers to v0 or v1 array.

– Rule 5: The paths are not compatible if
(γ(f)[j], γ(r)[j]) ∈ {(0,1),(1,0)} for some j.

– Rule 6: The paths are not compatible if
(δ

(f)
[j], δ

(r)
[j]) ∈ {(0,1),(1,0)} for some j.

8.3 Relational Conditions

The forward path imposes no static conditions involv-
ing as and bs, so any relational conditions imposed by
the reverse path can always be satisfied by the for-
ward path. Similarly, relational conditions imposed
by the forward path on es can always be satisfied by
the reverse path. The only relational conditions that
can cause conflicts are of the form cs[j] = ds[j] or
cs[j] 6= ds[j]. Such conditions can only be imposed by
the differential through Step s in the reverse path. We
need only ensure that these conditions can be satisfied
by the values in the corresponding nabla representa-
tions for the forward differential path.

– Rule 7: If the reverse path imposes a condition
cs[j] = ds[j] during step s, then the paths are not
compatible if (γ(f)[j], δ

(f)
[j]) ∈ {(0,1),(1,0)}.

– Rule 8: If the reverse path imposes a condition
cs[n − 1] 6= ds[n − 1] during step s, then the
paths are not compatible if (γ(f)[j], δ

(f)
[j]) ∈

{(0,0),(1,1)}.

9 Conclusion

The differential paths are formed by searching the
forward search tree (Section 6) and reverse search
tree (Section 7), generated by XOR-to-Additive
Branching, Additive-to-XOR Branching (Section 4),
Additive-Rotation Branching, and Static Branching
(Section 5). The forward search and reverse search
have been successfully implemented. We have deter-
mined the criteria to use in matching forward differ-
ential to a reverse differential, but we are only just
ready to begin implementing this. After implement-
ing the matching criteria, the next obstacle will be
finding an optimal order for searching through the
search tree.

References

1. E. Biham and R. Chen, Near-Collisions of SHA-0 Ad-
vances in Cryptology-CRYPTO 2004, Lecture Notes
in Computer Science, vol.3152, M. Franklin (Ed.), pp.
290-305, Springer-Verlag, 2004.

2. E. Biham and R. Chen, New results on SHA-0 and
SHA-1 Short talk presented at CRYPTO 2004 Rump
Session, 2004.

3. E. Biham, R. Chen, A. Joux, P. Carribault,
C. Lemuet and W. Jalby. Collisions of SHA-
0 and Reduced SHA-1, Advances in Cryptology-
EUROCRYPT 2005, Lecture Notes in Computer Sci-
ence, vol.3494, R. Crmaer (Ed.), pp. 36-57, Springer-
Verlag, 2005.

4. F. Chabaud and A. Joux, Differential Collisions in
SHA-0, Advances in Cryptology-CRYPTO’98, Lec-
ture Notes in Computer Science, vol.1462, R. Cramer
(Ed.), pp.56-71, Springer-Verlag, 1998.

5. National Institute of Standards and Technology, Fed-
eral Information Processing Standards (FIPS) Publi-
cation 180-2, Secure Hash Standard (SHS), February,
2004.

6. H. Gilbert and H. Hanschuh, Security Analysis of
SHA-256 and sisters, Selected Areas in Cryptogra-
phy, SAC 2003, Ottawa, Canada, Lecture Notes in
Computer Science, vol. 3006, M. Matsui and R. Zuc-
cheratopp (Eds), pp. 175-193, Springer, 2004.

7. A. Joux, Collisions in SHA-0 Short talk presented at
CRYPTO 2004 Rump Session, 2004.

8. C. Jutla and A. Patthak, A Matching Lower Bound
on the Minimum Weight of SHA-1 Expansion Code,
Cryptology ePrint Archive, Report 2005/266, 2005.
See http://eprint.iacr.org/

9. V. Klima, Finding MD5 Collisions on a Note-
book PC Using Multi-message Modifications, Cryp-
tology ePrint Archive, Report 2005/102, 2005. See
http://eprint.iacr.org/

10. V. Klima, Tunnels in Hash Functions: MD5 Collisions
Within a Minute, Cryptology ePrint Archive, Report
2006/105, 2006. See http://eprint.iacr.org/

11. J. Liang and X. Lai, Improved Collision Attack on
Hash Function MD5, Cryptology ePrint Archive, Re-
port 2005/425, 2005. See http://eprint.iacr.org/

12. K. Matusiewicz and J. Pieprzyk, Finding good dif-
ferential patterns for attacks on SHA-1, Cryptol-
ogy ePrint Archive, Report 2004/364, 2004. See
http://eprint.iacr.org/

13. 0. Mikle, Practical Attacks on Digital Signa-
tures Using MD5 Message Digest, Cryptology
ePrint Archive, Report 2004/356 , 2004. See
http://eprint.iacr.org/

14. A. Menezes, P van Oorschot and S. Vanstone, Hand-
book of Applied Cryptography, CRC Press LLC,
1997.

15. V. Rijmen and E. Oswald, Update on SHA-1, Cryp-
tology ePrint Archive, Report 2005/010, 2005. See
http://eprint.iacr.org/

16. R. Rivest, The MD5 Message-Digest Algorithm, In-
ternet RFC 1321, April 1992.

17. Y. Sasaki, Y. Naito, N. Kunihiro and K. Ohta,
Improved Collision Attack on MD5, Cryptol-
ogy ePrint Archive, Report 2005/400, 2005. See
http://eprint.iacr.org/

18. Y. Sasaki, Y. Naito, J. Yajima, T. Shimoyama, N.
Kunihiro and K. Ohta, How to Construct Sufficient
Condition in Searching Collisions of MD5, Cryp-
tology ePrint Archive, Report 2006/074, 2006. See
http://eprint.iacr.org/

19. M. Stevens, Fast Collision Attack on MD5, Cryptol-
ogy ePrint Archive, Cryptology ePrint Archive, Re-
port 2006/104, 2006. See http://eprint.iacr.org/

20. M. Sugita, M. Kawazoe and H. Imai, Gröbner
Basis Based Cryptanalysis of SHA-1, Cryptol-
ogy ePrint Archive, Report 2006/098, 2006. See
http://eprint.iacr.org/

21. X. Wang, D. Feng, X. Lai and H. Yu, Colli-
sions for Hash Functions MD4, MD5, HAVAL-128
and RIPEMD, Cryptology ePrint Archive, Report
2004/199, 2004. See http://eprint.iacr.org/

22. X. Wang, X. Lai, D. Feng, H. Chen and H. Yu, How
to break MD5 and other Hash Functions, Advances
in Cryptology-EUROCRYPT 2005, Lecture Notes in
Computer Science, vol.3494, pp 19-35, R. Cramer
(Ed.), Springer-Verlag, 2005.

23. X. Wang, H. Yu and Y. Yin, Efficient Collision
Search Attacks on SHA-0, Advances in Cryptology-
CRYPTO 2005, Lecture Notes in Computer Science,
vol.3621, pp.1-16, V. Shoup (Ed.), Springer-Verlag,
2005.

24. X. Wang, Y. Yin and H. Yu, Finding Collisions in
the Full SHA-1, Advances in Cryptology-CRYPTO
2005, Lecture Notes in Computer Science, vol.3621,
pp.17-36, V. Shoup (Ed.), Springer-Verlag, 2005.

25. J. Yajima and T. Shimoyama, Wang’s sufficient
conditions of MD5 are not sufficient, Cryptol-
ogy ePrint Archive, Report 2005/263, 2005. See
http://eprint.iacr.org/

